

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK



## Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

### Spectroscopic Determination of Cysteine with Alizarin Red S and Copper

Fang-Ying Wu<sup>a</sup>, Wen-sheng Liao<sup>a</sup>, Yu-Mei Wu<sup>b</sup>, Xiao-Fen Wan<sup>a</sup>

<sup>a</sup> Department of Chemistry, Nanchang University, Nanchang, China <sup>b</sup> Pakaging Engineering Institute of Jinan University, Zhuhai, China

**To cite this Article** Wu, Fang-Ying , Liao, Wen-sheng , Wu, Yu-Mei and Wan, Xiao-Fen(2008) 'Spectroscopic Determination of Cysteine with Alizarin Red S and Copper', *Spectroscopy Letters*, 41: 8, 393 – 398

**To link to this Article: DOI:** 10.1080/00387010802428872

**URL:** <http://dx.doi.org/10.1080/00387010802428872>

## PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

# Spectroscopic Determination of Cysteine with Alizarin Red S and Copper

Fang-Ying Wu<sup>1</sup>,  
Wen-sheng Liao<sup>1</sup>,  
Yu-Mei Wu<sup>2</sup>,  
and Xiao-Fen Wan<sup>1</sup>

<sup>1</sup>Department of Chemistry,  
Nanchang University, Nanchang,  
China

<sup>2</sup>Pakaging Engineering Institute  
of Jinan University, Zhuhai,  
China

**ABSTRACT** The interaction between metal complex  $\text{Cu}^{2+}$ –ARS (Alizarin Red S) and L-cysteine was investigated via fluorescence and absorption spectroscopies. In pH 5.2 Britton–Robinson buffer, the addition of L-cysteine into  $\text{Cu}^{2+}$ –ARS system resulted in a fluorescence enhancement because cysteine reduced  $\text{Cu}^{2+}$  to  $\text{Cu}^+$ , which led to  $\text{Cu}^{2+}$ –ARS decompound, and ARS was released. The result was also supported by absorption spectroscopy change. A good linear response of fluorescence intensity as a function of cysteine concentration was obtained ranging from  $1.0 \times 10^{-6}$  to  $4.0 \times 10^{-5}$  mol L<sup>−1</sup> with the detection limit as  $1.08 \times 10^{-7}$  mol L<sup>−1</sup>. The introduced method has high selectivity over other amino acids such as cystine, tyrosine, tryptophan, methionine, and glycine. It was applied to determine cysteine in protein hydrolysate of fresh pig blood with recovery of 88.4–100.2%.

**KEYWORDS**  $\text{Cu}^{2+}$ –ARS complex, fluorescence spectroscopy, L-cysteine, oxidation-reduction reaction

## INTRODUCTION

Thiol-containing L-cysteine (Cys) plays important roles in biological systems by its oxidation–reduction reaction.<sup>[1]</sup> It has been widely used in pharmaceutical products, food additives, and cosmetics. Many methods have been developed for the determination of Cys, which include high-performance liquid chromatography (HPLC),<sup>[2–4]</sup> capillary electrophoresis,<sup>[5]</sup> chemiluminescence,<sup>[6,7]</sup> electrochemistry,<sup>[8,9]</sup> spectrophotometry,<sup>[10–18]</sup> and spectrofluorimetry.<sup>[19–24]</sup> Among them, spectroscopic methods have advantages such as sensitivity, high selectivity, and easy operation. The determination of Cys using a copper (II)–catalyzed redox reaction has been previously reported.<sup>[13]</sup> Off-the-shelf and water-soluble Alizarin Red S (ARS) is a good chelating agent for metal ions like  $\text{Cu}^{2+}$ ,  $\text{Fe}^{3+}$ , and  $\text{Al}^{3+}$ .<sup>[25,26]</sup> Some groups studied the interaction between ARS and BSA or DNA via electrochemistry method.<sup>[27,28]</sup> Obviously, ARS is an efficient photochemistry and electrochemistry reagent and has potential application in biological systems. In this paper, a convenient assay of Cys was established based on  $\text{Cu}^{2+}$ –ARS.  $\text{Cu}^{2+}$ –ARS emits weaker fluorescence than does ARS alone. The addition of Cys to  $\text{Cu}^{2+}$ –ARS solution caused the release of ARS due to the redox reaction between Cys and  $\text{Cu}^{2+}$ . The method has high selectivity toward Cys over other amino acids like cystine, tyrosine, tryptophan, methionine,

Received 17 November 2007;  
accepted 19 April 2008.

Address correspondence to Fang-Ying Wu, Department of Chemistry, Nanchang University, Nanchang 330031, China. E-mail: fywu@ncu.edu.cn

and glycine due to the redox property of Cys. To our knowledge, it is the first time that  $\text{Cu}^{2+}$ –ARS complex was used in determining amino acids.

## MATERIALS AND METHODS

### Apparatus

All fluorescence measurements were carried out on a F-4500 spectrofluorimeter (Hitachi, Tokyo, Japan) equipped with a xenon lamp source and a 1.0-cm quartz cell, and the scan speed was  $240 \text{ nm min}^{-1}$ . Absorption spectra were recorded on a Shimadzu-2501 UV-Vis spectrophotometer (Kyoto, Japan) using a 1.0 cm quartz cell. All pH measurements were made with a pH-3C digital pH-meter (Shanghai REX Instrument Factory, Shanghai, China) with a combined glass–calomel electrode.

### Reagents

All chemicals were of analytical grade and were used without further purification. All solution was prepared using doubly distilled water.

Alizarin Red S (Shanghai Chemical Corp, Shanghai, China) solution was prepared by dissolving 0.0180 g ARS in 50 mL water to give a concentration of  $1.0 \times 10^{-3} \text{ mol L}^{-1}$ . L-Cysteine, L-cystine, L-tyrosine, L-tryptophan, L-methionine, and glycine were all purchased from Sigma (St. Louis; MO). Cys solution with a concentration of  $1.0 \times 10^{-2} \text{ mol L}^{-1}$  was prepared with water daily.  $\text{Cu}^{2+}$  solution with the concentration of  $1.0 \times 10^{-3} \text{ mol L}^{-1}$  was prepared by dissolving 0.0250 g copper sulfate pentahydrate (Jiangsu Reagent Factory of Jintan County, Jiangsu, China) in 100 mL water.  $\text{Cu}^+$  solution with the concentration of  $2.0 \times 10^{-4} \text{ mol L}^{-1}$  was prepared by dissolving 0.0010 g  $\text{CuCl}$  in 50 mL acetonitrile.

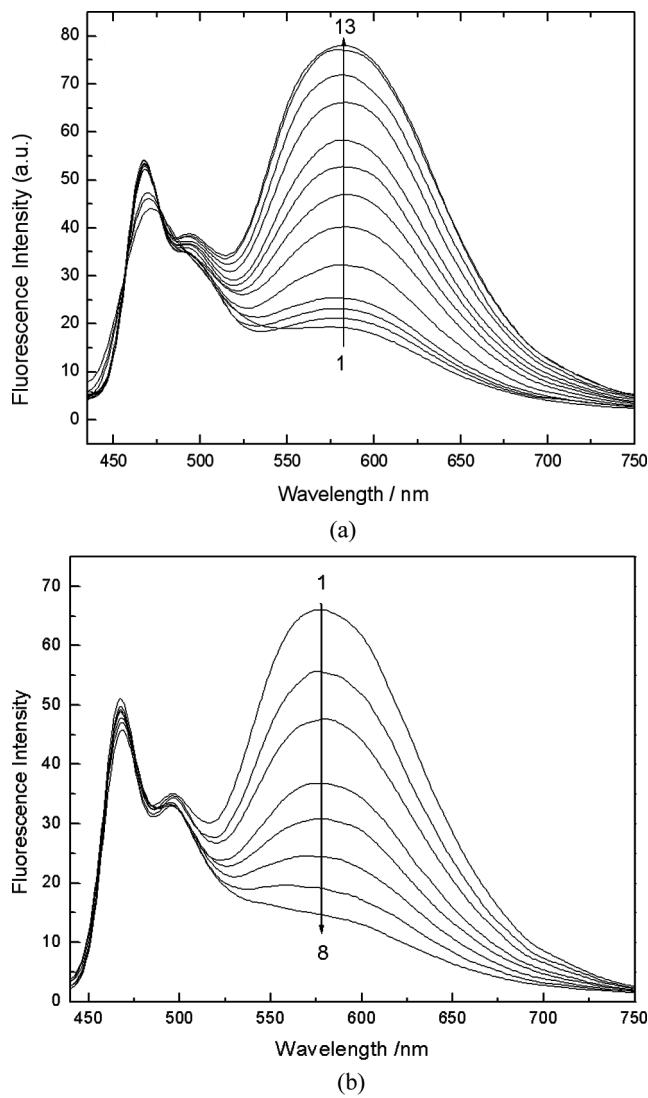
Britton–Robinson (B-R) buffer was prepared by adding 2.71 mL 85% phosphoric acid, 2.36 mL acetic acid, and 2.4700 g boric acid to a 1000-mL flask and diluting the mixture with water to the mark and adjusting the pH value with 0.20 mol  $\text{L}^{-1}$   $\text{NaOH}$ .

### Samples

Eight grams of fresh pig blood was dispersed in 100 mL water. AS 1.398 neutral protease was added to a proportion of 8000 U per gram of pig blood. The solution at pH 7.5 was hydrolyzed for 7 h in a

40°C water bath. It was decolored at 70°C using 2.0 g active carbon. Nitrogen gas was used throughout to prevent oxidizing. The filtered hydrolysate was stored at 0~4°C.

### Procedure


To a 10-mL colorimetric tube a certain amount of ARS and  $\text{Cu}^{2+}$  solution were added and stabilized for 0.5 h. The molar concentration ratio for ARS and copper sulfate was kept as 2:1. Subsequently, 1.0 mL B-R buffer solution with a pH value of 5.2 was added, which was followed by the addition of a standard solution of amino acid. Then the mixture was diluted to the mark with water. After 5 mins reaction at room temperature, fluorescence spectra were measured at excitation wavelength of 425 nm and the band slits of both excitation and emission were set as 5.0 nm. Absorption spectra were collected for the solution prepared the same way as those for fluorescence studies. When the real sample was determined, the standard solution of amino acid was substituted by the sample.

## RESULTS AND DISCUSSION

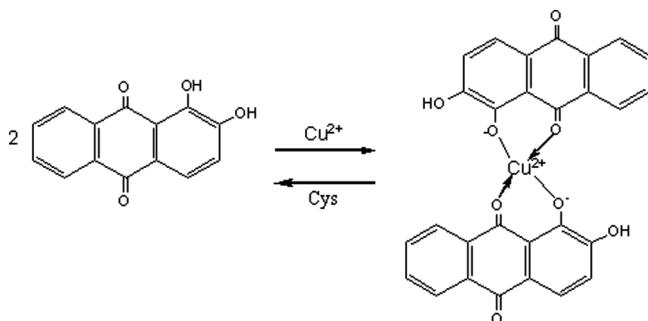

### Fluorescence Titration of ARS–Cu(II) with Cys

Figure 1a shows emission spectral changes of  $\text{Cu}^{2+}$ –ARS upon addition of Cys.  $\text{Cu}^{2+}$ –ARS emitted weak fluorescence in pH 5.2 B-R buffer. However, an enhancement in fluorescence intensity was observed in the presence of Cys. ARS is a good fluorescence compound whose maximum emission wavelength centered at 580 nm in pH 5.2 B-R buffer media. The presence of  $\text{Cu}^{2+}$  led the fluorescence intensity of ARS decrease, and the spectral changes are shown in Fig. 1b. The fluorescence quenching was ascribed to the  $\text{Cu}^{2+}$ –ARS formation. It was clear that the fluorescence spectral profiles of Figs. 1a, b were very similar. Obviously, the fluorescence increase was possibly due to the release of ARS when Cys was added. The process of change is depicted in Scheme 1. The decomposition of  $\text{Cu}^{2+}$ –ARS was owing to Cys as an efficient reductant to reduce  $\text{Cu}^{2+}$  to  $\text{Cu}^+$ .

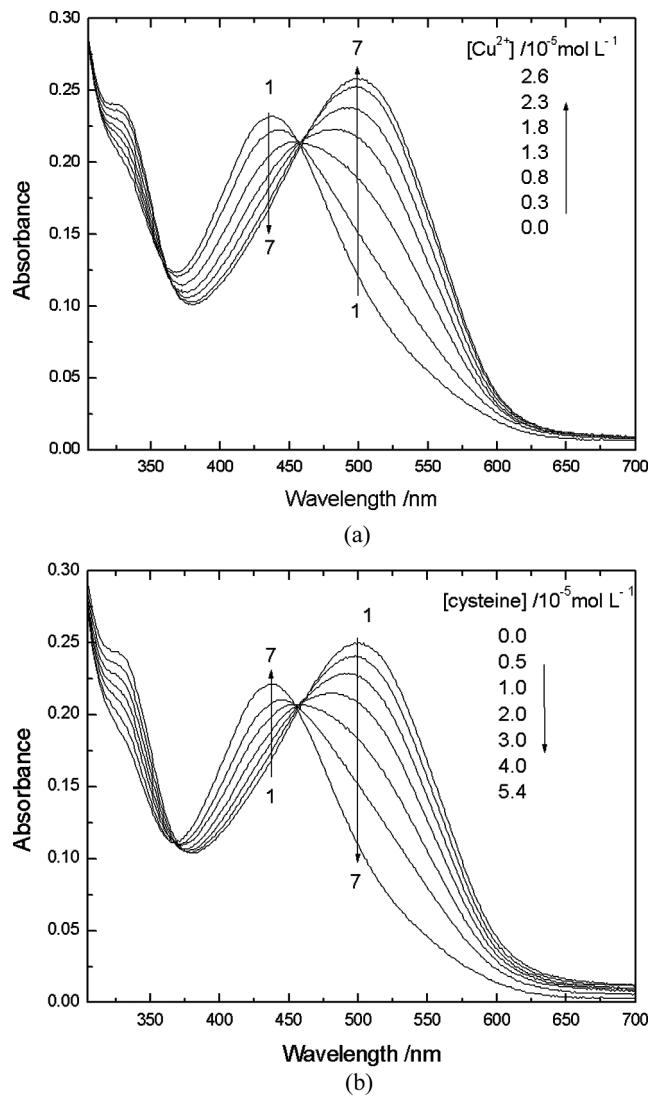
Fluorescent titration results displayed a linear response as a function of Cys concentration. The linear relationship between Cys concentration and



**FIGURE 1** (a) Fluorescence spectra of Cu<sup>2+</sup>-ARS (2.5 × 10<sup>-5</sup> mol L<sup>-1</sup>) in the presence and absence of Cys in pH 5.2 B-R buffer. The concentrations of Cys for curves 1 to 13 were 0, 0.1, 0.3, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0, 6.0 (× 10<sup>-5</sup> mol L<sup>-1</sup>), respectively. The excitation wavelength was set at 425 nm. (b) Fluorescence spectra of ARS (5.0 × 10<sup>-5</sup> mol L<sup>-1</sup>) upon addition of Cu<sup>2+</sup> in pH 5.2 B-R buffer. The concentrations of Cu<sup>2+</sup> for curves 1 to 8 were 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.5, 4.5 (× 10<sup>-5</sup> mol L<sup>-1</sup>), respectively. The excitation wavelength was set at 425 nm.

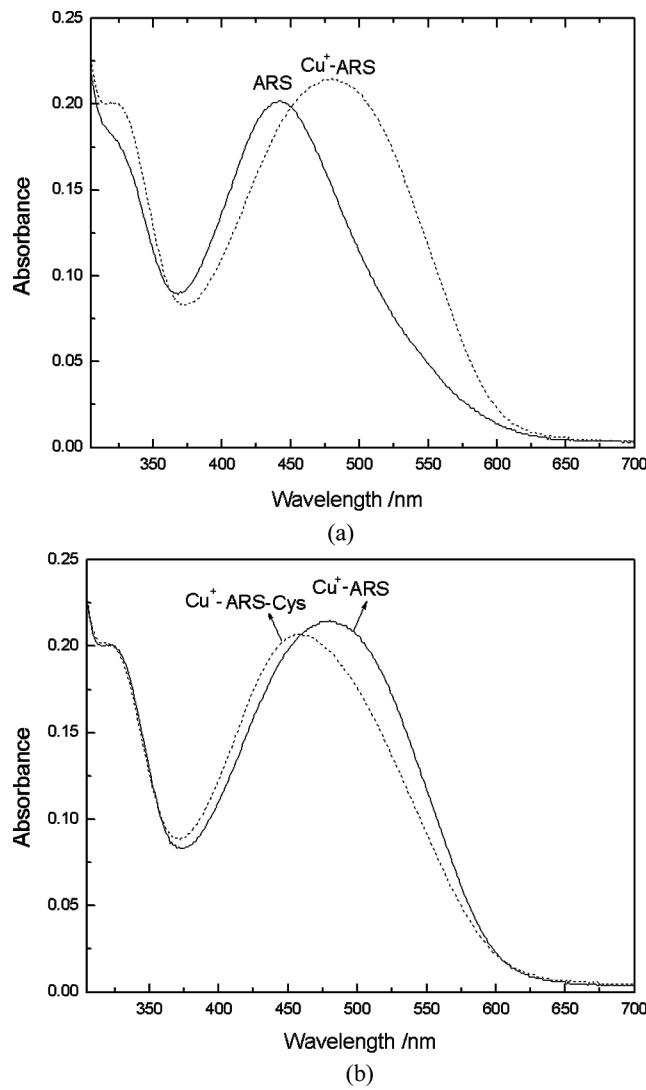
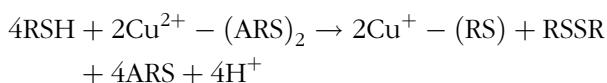


**SCHEME 1** Metal complex formation and decompound.


fluorescence enhancement ranging from 1.0 × 10<sup>-6</sup> to 4.0 × 10<sup>-5</sup> mol L<sup>-1</sup> was obtained and the regression equation was as follows:  $I_{\Delta F} = 19.5 + 1.319 \times 10^6 C_{\text{cys}}$  ( $R = 0.9994$ ,  $n = 9$ , SD = 0.686). The limit of detection (LOD) was given as  $1.08 \times 10^{-7}$  mol L<sup>-1</sup> by equation  $\text{LOD} = KS_0/S$ , where  $K$  is a numerical factor chosen according to the confidence level desired,  $S_0$  is the standard deviation (SD) of the blank measurements ( $n = 9$ ,  $K = 3$ ), and  $S$  is the slope of calibration curve.

### Absorption Titration of Cu<sup>2+</sup>-ARS with Cys

Figure 2a exhibited the absorption spectrum of ARS in the presence and absence of Cu<sup>2+</sup>. The maximum absorption wavelength of ARS in pH 5.2 B-R buffer aqueous solution centered at 438 nm. When Cu<sup>2+</sup> was added, the peak shifted to 501 nm along with color changing from yellow to red. The spectral change was owing to 1:2 (Cu<sup>2+</sup>:ARS) model complex formation,<sup>[25]</sup> and Job plot curve also provided positive evidence. In Cu<sup>2+</sup>-ARS solution, the addition of Cys resulted in dramatic spectral changes, which are shown in Fig. 2b. The spectral recovery of ARS was observed, and the color changed from red to yellow as well. It can be concluded that Cu<sup>2+</sup>-ARS complex decompounded and ARS was released. However, upon addition of other amino acids such as cystine, tyrosine, tryptophan, methionine, and glycine, neither spectral nor color changes were observed, which implied high selectivity for cysteine over other amino acids. The result was consistent with that of fluorescence titration.



At the same time, it was found that the absorbance change at 501 nm of Cu<sup>2+</sup>-ARS also exhibited a linear response to Cys concentration ranging from 1.2 × 10<sup>-6</sup> to 5.4 × 10<sup>-5</sup> mol L<sup>-1</sup>. The regression equation was  $A_{501\text{ nm}} = 0.2545 - 2625C_{\text{cys}}$  ( $R = 0.996$ ,  $n = 7$ , SD = 0.005) with the limit of detection as 1.20 × 10<sup>-7</sup> mol L<sup>-1</sup>. The calculation method was the same as for fluorescence assay. Therefore, dual spectral response could be used for determining the concentration of Cys.

In order to explain the mechanism, absorption spectral properties of Cu<sup>2+</sup>-ARS and the effect of Cys on the complex (Cu<sup>2+</sup>-ARS) were also investigated under identical experimental condition. Figure 3a, b shows the absorption spectra of ARS, Cu<sup>2+</sup>-ARS, and



**FIGURE 2** (a) Absorption spectra of ARS ( $5.0 \times 10^{-5} \text{ mol L}^{-1}$ ) in the presence and absence of  $\text{Cu}^{2+}$  in pH 5.2 B-R buffer. (b) Absorption spectral change of  $\text{Cu}^{2+}$ -ARS ( $2.5 \times 10^{-5} \text{ mol L}^{-1}$ ) in the presence and absence of Cys in pH 5.2 B-R buffer.

the mixture of  $\text{Cu}^+$ -ARS and Cys, respectively. The maximum wavelength of complex  $\text{Cu}^+$ -ARS centered at 487 nm, which blue shifted 14 nm compared with that of  $\text{Cu}^{2+}$ -ARS. It also exhibited a stable complex formation between ARS and  $\text{Cu}^+$ . However, the addition of Cys into the solution of  $\text{Cu}^+$ -ARS led the absorption spectra blue shift along with absorbance decrease at 487 nm. It was obvious that  $\text{Cu}^+$ -ARS complex decomposed and  $\text{Cu}^+$ -Cys formed, which exhibited that  $\text{Cu}^+$ -Cys complex was more stable than  $\text{Cu}^+$ -ARS. Thus the mechanism of  $\text{Cu}^{2+}$ -ARS responding to Cys could be expressed as follows:



**FIGURE 3** (a) Absorption spectra of ARS and  $\text{Cu}^+$ -ARS in pH 5.2 B-R buffer. (b) The absorption spectra of  $\text{Cu}^+$ -ARS and the mixture of  $\text{Cu}^+$ -ARS and Cys in pH 5.2 B-R buffer.  $[\text{ARS}] = 5.0 \times 10^{-5} \text{ mol L}^{-1}$ ,  $[\text{Cu}^+] = 2.5 \times 10^{-5} \text{ mol L}^{-1}$ ,  $[\text{Cys}] = 1.5 \times 10^{-5} \text{ mol L}^{-1}$ .

where RSH is cysteine,  $\text{Cu}^{2+}$ -(ARS)<sub>2</sub> is the complex between  $\text{Cu}^{2+}$  and ARS, RSSR is cystine,  $\text{Cu}^+$ -(RS) is the complex between cysteine and  $\text{Cu}^+$ , and ARS is Alizarin Red S.

It was concluded that  $\text{Cu}^{2+}$ -(ARS)<sub>2</sub> selectively and sensitively responded to Cys, which was ascribed to the deoxidation property at Cys and competitive binding action between Cys and ARS for  $\text{Cu}^+$ .

## Analytical Application

### Optimal Experimental Condition

In order to optimize experimental condition, the effect of acidity and reaction time on the determination of Cys was investigated. The fluorescent

**TABLE 1** Interference of Foreign Substances

| Interferent                                 | Addition                                 | Error (%) | Interferent    | Addition                                 | Error (%) |
|---------------------------------------------|------------------------------------------|-----------|----------------|------------------------------------------|-----------|
| Na <sup>+</sup>                             | $1.0 \times 10^{-2}$ mol L <sup>-1</sup> | 2.9       | Cystine        | $1.0 \times 10^{-4}$ mol L <sup>-1</sup> | -3.2      |
| K <sup>+</sup>                              | $1.0 \times 10^{-2}$ mol L <sup>-1</sup> | +3.5      | Tryptophan     | $1.0 \times 10^{-4}$ mol L <sup>-1</sup> | +6.0      |
| Ag <sup>+</sup>                             | $1.0 \times 10^{-3}$ mol L <sup>-1</sup> | -5.1      | Tyrosine       | $5.0 \times 10^{-4}$ mol L <sup>-1</sup> | -1.1      |
| Zn <sup>2+</sup>                            | $5.0 \times 10^{-4}$ mol L <sup>-1</sup> | +4.0      | Methionine     | $5.0 \times 10^{-4}$ mol L <sup>-1</sup> | +5.0      |
| Hg <sup>2+</sup>                            | $5.0 \times 10^{-4}$ mol L <sup>-1</sup> | -5.0      | Glycine        | $5.0 \times 10^{-4}$ mol L <sup>-1</sup> | +4.0      |
| Mg <sup>2+</sup>                            | $1.0 \times 10^{-3}$ mol L <sup>-1</sup> | -8.0      | Alanine        | $2.5 \times 10^{-4}$ mol L <sup>-1</sup> | +5.0      |
| Al <sup>3+</sup>                            | $6.0 \times 10^{-5}$ mol L <sup>-1</sup> | -5.0      | Arginine       | $2.0 \times 10^{-4}$ mol L <sup>-1</sup> | +5.0      |
| Ca <sup>2+</sup>                            | $1.0 \times 10^{-3}$ mol L <sup>-1</sup> | -2.8      | Aspartic acid  | $1.5 \times 10^{-4}$ mol L <sup>-1</sup> | +5.0      |
| Ni <sup>2+</sup>                            | $1.0 \times 10^{-4}$ mol L <sup>-1</sup> | -4.6      | Glutamine      | $5.0 \times 10^{-4}$ mol L <sup>-1</sup> | +5.0      |
| Pb <sup>2+</sup>                            | $5.0 \times 10^{-4}$ mol L <sup>-1</sup> | +5.0      | Histidine      | $3.5 \times 10^{-4}$ mol L <sup>-1</sup> | +5.0      |
| Fe <sup>3+</sup>                            | $1.0 \times 10^{-5}$ mol L <sup>-1</sup> | -8.0      | Hydroxyproline | $2.5 \times 10^{-4}$ mol L <sup>-1</sup> | +5.0      |
| Fe <sup>2+</sup>                            | $5.0 \times 10^{-4}$ mol L <sup>-1</sup> | -3.2      | Leucine        | $2.0 \times 10^{-4}$ mol L <sup>-1</sup> | +5.0      |
| Cd <sup>2+</sup>                            | $2.0 \times 10^{-3}$ mol L <sup>-1</sup> | -4.9      | Phenylalanine  | $2.3 \times 10^{-4}$ mol L <sup>-1</sup> | +5.0      |
| I <sup>-</sup>                              | $5.0 \times 10^{-4}$ mol L <sup>-1</sup> | +3.1      | Lysine         | $2.0 \times 10^{-4}$ mol L <sup>-1</sup> | -3.0      |
| S <sub>2</sub> O <sub>3</sub> <sup>2-</sup> | $5.0 \times 10^{-4}$ mol L <sup>-1</sup> | +5.0      | Serine         | $2.5 \times 10^{-4}$ mol L <sup>-1</sup> | -4.0      |
| ClO <sub>3</sub> <sup>-</sup>               | $5.0 \times 10^{-4}$ mol L <sup>-1</sup> | -2.0      | Threonine      | $3.0 \times 10^{-4}$ mol L <sup>-1</sup> | +5.0      |
| Br <sup>-</sup>                             | $1.0 \times 10^{-2}$ mol L <sup>-1</sup> | +5.0      | Valine         | $2.0 \times 10^{-4}$ mol L <sup>-1</sup> | -1.1      |
| S <sup>2-</sup>                             | $5.0 \times 10^{-5}$ mol L <sup>-1</sup> | +4.5      | Cystamine      | $1.0 \times 10^{-4}$ mol L <sup>-1</sup> | +5.0      |
| EDTA                                        | $5.0 \times 10^{-5}$ mol L <sup>-1</sup> | +5.0      | Methionine     | $5 \times 10^{-4}$ mol L <sup>-1</sup>   | 4.0       |
| BSA                                         | $2.0 \times 10^{-5}$ mol L <sup>-1</sup> | -4.3      | GSH            | $1.0 \times 10^{-4}$ mol L <sup>-1</sup> | +5.0      |
| HSA                                         | $2.0 \times 10^{-5}$ mol L <sup>-1</sup> | -4.7      | Cysteamine     | $1.0 \times 10^{-4}$ mol L <sup>-1</sup> | +5.0      |

intensity change of the system was maximum and kept constant when pH value was from 4.5 to 6.5. We also studied the fluorescence spectra changes in different buffer. It was found that ARS did not emit fluorescence in HAc–NaAc, NaH<sub>2</sub>PO<sub>4</sub>–Na<sub>2</sub>HPO<sub>4</sub>, and HCl–hexamethylenetetramine. Only in B-R buffer solution were distinct changes observed. It was attributed that boron participated in action with ARS.<sup>[29]</sup> Thus, pH 5.2 B-R aqueous solution was selected. In this buffer solution, the reaction between Cu<sup>2+</sup>–ARS and Cys was completed after 3 min at room temperature, and absorbance and fluorescence intensity of the system kept constant at least 24 h under the experimental condition. Thus, 5 min were chosen as reaction time.

### Interference of Foreign Substances

Under optimal experimental condition, in the mixture of  $1.0 \times 10^{-5}$  mol L<sup>-1</sup> Cys and  $2.5 \times 10^{-5}$  mol L<sup>-1</sup> Cu<sup>2+</sup>–ARS, the presence of the amounts of foreign substances given a Table 1 resulted in less than  $\pm 5\%$  error.

### Sample Analysis

The feasibility of the proposed method in analyzing real samples has also been investigated. It has been used to determine cysteine in protein hydrolysate of fresh pig blood. Recovery experiments were performed, and the results are given in Table 2.

**TABLE 2** Analytical Results of the Samples

| Method             | Added (10 <sup>-6</sup> mol/L) | Found (mean) (10 <sup>-6</sup> mol/L) | Recovery (mean) % | RSD (%) (n = 5) |
|--------------------|--------------------------------|---------------------------------------|-------------------|-----------------|
| Spectrophotometry  | 0                              | 3.28                                  | 88.4–94.6 (93.9)  | 3.5             |
|                    | 3.0                            | 5.55–5.94 (5.90)                      |                   |                 |
|                    | 6.0                            | 9.05–9.15 (9.11)                      |                   |                 |
| Spectrofluorimetry | 0                              | 3.43                                  | 97.5–98.6 (98.2)  | 5.1             |
|                    | 3.0                            | 6.35–6.41 (6.38)                      |                   |                 |
|                    | 6.0                            | 9.34–9.45 (9.39)                      |                   |                 |

## CONCLUSIONS

In this paper, a simple, sensitive, and selective method for the determination of cysteine based on  $\text{Cu}^{2+}$ -ARS was proposed. The fluorescence and absorption spectral changes displayed a good linear response as a function of Cys concentration. The high selectivity over other amino acids was ascribed to the redox property of Cys. The proposed method has been used in analyzing Cys in protein hydrolysate of fresh pig blood with good recoveries of 88.4–100.2%.

## ACKNOWLEDGMENTS

The authors gratefully acknowledge the financial support of this study by Jiangxi Province Natural Science Foundation (JXNSF no. 2007GZH2119), the State Key Laboratory of Chemo/Biosensing and Chemometrics of Hunan University (no. 2005018), and Jiangxi Province Education Ministry Foundation (no. 2005–38).

## REFERENCES

1. Ganong, W. F. *Review of Medical Physiology*, Englewood Cliffs: Prentice-Hall, 1997.
2. Chwatkó, G.; Bald, E. Determination of cysteine in human plasma by high-performance liquid chromatography and ultraviolet detection after pre-column derivatization with 2-chloro-1-methylpyridinium iodide. *Talanta* **2000**, *52*(3), 509–515.
3. Katusiak, A. E.; Paterson, P. G.; Kamencic, H.; Shoker, A.; Lyon, A. W. Pre-column derivatization high-performance liquid chromatographic method for determination of cysteine, cysteinyl-glycine, homocysteine and glutathione in plasma and cell extracts. *J. Chromatogr. B* **2001**, *758*(2), 207–212.
4. Amarnath, K.; Amarnath, V.; Amarnath, K.; Valentine, H. L.; Valentine, W. M. A specific HPLC-UV method for the determination of cysteine and related aminothiols in biological samples. *Talanta* **2003**, *60*(6), 1229–1238.
5. Jin, W. R.; Wang, Y. Determination of cysteine by capillary zone electrophoresis with end-column amperometric detection at a gold/mercury amalgam microelectrode without deoxygenation. *J. Chromatogr. A* **1997**, *769*(2), 307–314.
6. Nie, L. H.; Ma, H. M.; Sun, M.; Li, X. H.; Su, M. H.; Liang, S. C. Direct chemiluminescence determination of cysteine in human serum using quinine-Ce(IV) system. *Talanta* **2003**, *59*(5), 959–964.
7. Pérez-Ruiz, T.; Martínez-Lozano, C.; Tomás, V.; Martín, J. Flow injection chemiluminescent method for the successive determination of L-cysteine and L-cystine using photogenerated tris(2,2'-bipyridyl)ruthenium (III). *Talanta* **2002**, *58*(5), 987–994.
8. Li, M. G.; Shang, Y. J.; Gao, Y. C.; Wang, G. F.; Fang, B. Preparation of novel mercury-doped silver nanoparticles film glassy carbon electrode and its application for electrochemical biosensor. *Anal. Biochem.* **2005**, *341*(1), 52–57.
9. Shahrokhan, S.; Karimi, M. Voltammetric studies of a cobalt (II)-4-methylsalophen modified carbon-paste electrode and its application for the simultaneous determination of cysteine and ascorbic acid. *Electrochim. Acta* **2004**, *50*(1), 77–84.
10. Guo, Y.; Shao, S. J.; Xu, J.; Shi, Y. P.; Jiang, S. X. A specific colorimetric cysteine sensing probe based on dipyrromethane-TCNQ assembly. *Tetrahedron Lett.* **2004**, *45*(34), 6477–6480.
11. Sastry, C. S. P.; Srinivas, K. R.; Prasad, K. M. M. K. Spectrophotometric determination of bio-active compounds with chloramine-T and gallocyanine. *Talanta* **1996**, *43*(10), 1625–1632.
12. Zaia, D. A. M.; Ribas, K. C. L.; Zaia, C. T. B. V. Spectrophotometric determination of cysteine and/or carbocysteine in a mixture of amino acids, shampoo, and pharmaceutical products using p-benzoquinone. *Talanta* **1999**, *50*(5), 1003–1010.
13. Teshima, N.; Nobuta, T.; Sakai, T.; Kawashima, T. Utilization of a copper catalysis for the spectrophotometric determination of cysteine. *Bunseki Kagaku* **2001**, *50*(1), 47–51.
14. Amarnath, V.; Amarnath, K. Specific determination of cysteine and penicillamine through cyclization to 2-thioxothiazolidine-4-carboxylic acids. *Talanta* **2002**, *56*(4), 745–751.
15. Abbaspour, A.; Mirzajani, R. Indirect simultaneous kinetic determination of L-cysteine and homocysteine by ANNs. *Anal. Lett.* **2006**, *39*(4), 791–807.
16. Ghasemi, J.; Seifi, S.; Sharifi, M.; Ghorbani, R.; Amini, A. Simultaneous kinetic spectrophotometric determination of ascorbic acid and L-cysteine by H-point standard addition method. *Microchim. Acta* **2004**, *148*(3–4), 259–265.
17. Ghasemi, J.; Seraji, H. R.; Noroozi, M.; Hashemi, M.; Jabbari, A. Differential kinetic spectrophotometric determinations of ascorbic acid and L-cysteine by partial least squares method. *Anal. Lett.* **2004**, *37*(4), 725–737.
18. Lenarczuk, T.; Roszczuk, I.; Koncki, R. Quick cuvette test for thiol compounds. *Anal. Lett.* **2000**, *33*(1), 137–144.
19. Wang, H.; Wang, W. S.; Zhang, H. S. A spectrofluorimetric method for cysteine and glutathione using the fluorescence system of Zn(II)-8-hydroxyquinoline-5-sulphonic acid complex. *Spectrochim. Acta A* **2001**, *57*(12), 2403–2407.
20. Chen, Y. H.; Cai, R. X. Highly sensitive spectrofluorimetric determination of L-cysteine based on inhibition of hemoglobin. *Spectrochim. Acta A* **2003**, *59*(14), 3357–3362.
21. Wang, H.; Wang, W. S.; Zhang, H. S. Spectrofluorimetric determination of cysteine based on the fluorescence inhibition of Cd(II)-8-hydroxyquinoline-5-sulphonic acid complex by cysteine. *Talanta* **2001**, *53*(5), 1015–1019.
22. Liang, S. C.; Wang, H.; Zhang, Z. M.; Zhang, X.; Zhang, H. S. Spectrofluorimetric determination of cysteine by 5-maleimidyl-2-(m-methylphenyl)benzoxazole. *Spectrochim. Acta A* **2002**, *58*(12), 2605–2611.
23. Fu, N. N.; Wang, H.; Li, M. L.; Zheng, G. J.; Zhang, H. S. Spectrofluorimetric determination of thiols in biological samples with a new fluorescent probe 3-maleimidylbenzanthrone. *Anal. Lett.* **2005**, *38*(5), 791–802.
24. Liang, S. C.; Wang, H.; Zhang, Z. M.; Zhou, Y. Y.; Zhang, H. S. Spectrofluorimetric determination of thiols by use of N-[P-(2-benzoxazolyl)phenyl]maleimide. *Fresenius J. Anal. Chem.* **2001**, *370*(8), 1117–1119.
25. Nejati-Yazdinejad, M. Spectrophotometric determination of trace amount of copper(II) ion based on complexation with an anthraquinone derivative. *Anal. Sci.* **2006**, *22*(4), 617–619.
26. Safavi, A.; Abdollahi, H.; Mirzajani, R. Simultaneous spectrophotometric determination of Fe(III), Al(III) and Cu(II) by partial least-squares calibration method. *Spectrochim. Acta A* **2006**, *63*(1), 196–199.
27. Sun, W.; Jiao, K.; Liu, X. Y. Electrochemical study of alizarin red S-bovine serum albumin interaction. *Chin. J. Anal. Chem.* **2002**, *30*(3), 312–314.
28. Niu, S. Y.; Zhang, S. -S.; Ma, L. B.; Jiao, K. Electrochemical studies on the interaction between alizarin red S and deoxyribonucleic acid. *Chin. J. Anal. Chem.* **2004**, *32*(9), 1234–1236.
29. Şahin, I.; Nakiboğlu, N. Voltammetric determination of boron by using Alizarin Red S. *Anal. Chim. Acta* **2006**, *572*(2), 253–258.